Min. Error Disc. of Linearly Independent Pure States Analytic Properties of Optimal POVM

Tanmay Singal¹ Sibasish Ghosh¹

¹Optics and Quantum Information Group Institute of Mathematical Sciences Chennai

International Program for Quantum Information, Bhubaneswar, 2014

Tanmay Singal ,Sibasish Ghosh Min. Error Disc. of Linearly Independent Pure States

The Ensemble

• $\{p_i > 0, \rho_i\}_{i=1}^m$ $\rho_i \in \mathcal{B}(\mathcal{H})$ where dim $\mathcal{H} = n$

The m POVM

•
$$\{\Pi_i\}_{i=1}^m$$
 $\Pi_i \ge 0$ $\sum_{i=1}^m \Pi_i = \mathbb{I}$

Avg. Probability of Success: P_s = Σ^m_{i=1} p_i Tr(ρ_iΠ_i)
 Avg. Probability of Error: P_e = Σ^m_{i,j=1} p_i Tr(ρ_iΠ_j)

• □ > < 同 > < 回 > <</p>

- Necessary Condition: Π_j(p_jρ_j − p_iρ_i)Π_i = 0, ∀1 ≤ i, j ≤ m (Given by Holevo)
- SDP Necessary and Sufficient Conditions:
- $\operatorname{Min}_{Z=Z^{\dagger}}\operatorname{Tr}(Z) \ni Z \ge p_i \rho_i \forall 1 \le i \le m$
- Complementary Slackness Conditions (given by Yuen): $(Z - p_i \rho_i) \prod_i = \prod_i (Z - p_i \rho_i) = 0, \forall 1 \le i \le m$

(4月) (1日) (1日)

Some Important Ensembles Solved So Far

- When $\operatorname{Supp}(\rho_i) \perp \operatorname{Supp}(\rho_j) \forall i, j$ $\Pi_i = \operatorname{Projector on } \operatorname{Supp}(\rho_i) \forall i$
- Any ensemble of two states (by Helstrom)
- When $\sum_i p_i \rho_i = \frac{1}{m} \mathcal{I}$
- Equiprobable ensemble when ρ_i lie on the orbit of some unitary: $\rho_{i+1} = U \ \rho_i \ U^{\dagger}$
- For three qubits (recently)

- The problem we look at is MED when $\rho_i \rightarrow |\psi_i\rangle\langle\psi_i|$ and { ψ_i } are linearly independent.
- In this case dim $(\mathcal{H}) = m$
- Kennedy showed that $\Pi_i \rightarrow |v_i\rangle \langle v_i|$, where $\langle v_i | v_j \rangle = \delta_{i,j} \forall 1 \le i, j \le m$. i.e. Optimal m-POVM is rank-one projective measurement
- Case when m = 2 has been solved, but not for m = 3.

A Special Representation

- Ensemble: $\{p_i, |\psi_i\rangle\langle\psi\rangle i|\}_{i=1}^m$ where $|\psi_i\rangle$ are LI.
- Define: $|\widetilde{\psi}_i\rangle = \sqrt{p_i}|\psi_i\rangle$
- $|\tilde{\psi}_i\rangle$ are LI $\Rightarrow \exists \{|\tilde{u}_i\rangle\} \ni \langle \tilde{\psi}_i|\tilde{u}_j\rangle = \delta_{i,j}$
- Let G be gram matrix of { $|\psi_i\rangle$ } i.e. $G_{ij} = \langle \tilde{\psi}_i | \tilde{\psi}_j \rangle$ which implies and is implied by $G_{ij}^{-1} = \langle \tilde{u}_i | \tilde{u}_j \rangle$
- Let $\{|v_i\rangle\}$ be any ONB. Then $|v_i\rangle = \sum_{j=1}^{m} (G^{\frac{1}{2}}U)_{j,i} |\tilde{u_j}\rangle$ where U is some unitary.

• Holevo's Necessary Condition:

$$\Rightarrow \langle v_j | (|\widetilde{\psi}_j \rangle \langle \widetilde{\psi}_j | - |\widetilde{\psi}_i \rangle \langle \widetilde{\psi}_i |) | v_i \rangle = 0, \ \forall \ 1 \le i, j \ \le m$$

$$\Rightarrow \ (\mathsf{G}^{\frac{1}{2}}\widetilde{U})_{ii}(\mathsf{G}^{\frac{1}{2}}\widetilde{U})^*_{ij} \ = \ (\mathsf{G}^{\frac{1}{2}}\widetilde{U})_{ji}(\mathsf{G}^{\frac{1}{2}}\widetilde{U})^*_{jj} \ \forall \ 1 \le i,j \le m$$

• Add a phase
$$\longrightarrow |v_i\rangle \longrightarrow e^{i\phi_i}|v_i\rangle$$
 so that $(G^{\frac{1}{2}}\widetilde{U})_{i,i} \ge 0$

• Let
$$D = Diag((G^{\frac{1}{2}}\widetilde{U})_{11}), (G^{\frac{1}{2}}\widetilde{U})_{22}), \cdots, (G^{\frac{1}{2}}\widetilde{U})_{mm})$$

• Then the matix $G^{\frac{1}{2}}\widetilde{U}D^{-1}$ is hermitian.

$$\mathsf{G}^{\frac{1}{2}}\widetilde{U}\mathsf{D}^{-1} = \left(\begin{array}{ccc} 1 & \frac{(\mathsf{G}^{\frac{1}{2}}\widetilde{U})_{1,2}}{(\mathsf{G}^{\frac{1}{2}}\widetilde{U})_{2,2}} & \cdots \\ & \frac{(\mathsf{G}^{\frac{1}{2}}\widetilde{U})_{2,1}}{(\mathsf{G}^{\frac{1}{1}}\widetilde{U})_{1,1}} & 1 & \cdots \\ & \vdots & \ddots & \vdots \end{array}\right)$$

⊒ →

Consider the equation:

$$D^{-1}\widetilde{U}^{\dagger}G^{\frac{1}{2}} G^{-1} G^{\frac{1}{2}}\widetilde{U}D^{-1} = D^{-2}$$

- Note that the RHS is diagonal.
- Now, let m=3 and the states |ψ_i⟩ be real ⇒ everything is real (gram matrix, optimal POVM, |u_i⟩ states etc). So we can work in the real domain without having to worry about complex numbers.
- The matrix equation upstairs is then given by¹:

$$\begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix} \begin{pmatrix} (G^{-1})_{11} & (G^{-1})_{12} & (G^{-1})_{13} \\ (G^{-1})_{21} & (G^{-1})_{22} & (G^{-1})_{23} \\ (G^{-1})_{31} & (G^{-1})_{32} & (G^{-1})_{33} \end{pmatrix} \begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix} \\ = \begin{pmatrix} (D_{11})^{-2} & 0 & 0 \\ 0 & (D_{22})^{-2} & 0 \\ 0 & 0 & (D_{33})^{-2} \end{pmatrix}$$

 $^1 Note$ again that the elements $({\rm G}^{-1})_{ij}$ are known and that $\alpha,\beta,\gamma,D_{ii}$ are unknowns.

We get 6 equations in the matrix elements:

$$\begin{split} &\alpha^2(\mathsf{G}^{-1})_{12} + \alpha((\mathsf{G}^{-1})_{11} + (\mathsf{G}^{-1})_{22} + (\mathsf{G}^{-1})_{13}\beta + (\mathsf{G}^{-1})_{23}\gamma) \\ &+ (\mathsf{G}^{-1})_{33}\beta\gamma + (\mathsf{G}^{-1})_{23}\beta + (\mathsf{G}^{-1})_{13}\gamma + (\mathsf{G}^{-1})_{12} = 0 \\ &\beta^2(\mathsf{G}^{-1})_{13} + \beta((\mathsf{G}^{-1})_{11} + (\mathsf{G}^{-1})_{33} + (\mathsf{G}^{-1})_{23}\gamma + (\mathsf{G}^{-1})_{12}\alpha) \\ &+ (\mathsf{G}^{-1})_{22}\alpha\gamma + (\mathsf{G}^{-1})_{12}\gamma + (\mathsf{G}^{-1})_{23}\alpha + (\mathsf{G}^{-1})_{13} = 0 \\ &\gamma^2(\mathsf{G}^{-1})_{23} + \gamma((\mathsf{G}^{-1})_{22} + (\mathsf{G}^{-1})_{33} + (\mathsf{G}^{-1})_{13}\beta + (\mathsf{G}^{-1})_{12}\alpha) \\ &+ (\mathsf{G}^{-1})_{11}\alpha\beta + (\mathsf{G}^{-1})_{12}\beta + (\mathsf{G}^{-1})_{13}\alpha + (\mathsf{G}^{-1})_{23} = 0 \end{split}$$

The above are quadraitc in α, β, γ . Typically this set has 8 different solutions of which only one corresponds to the optimal POVM. Some solutions are complex and hence discarded. The remaining solutions correspond to projective measurements where P_s is stationary in the space of projective measurement.

$$\begin{split} (\mathsf{G}^{-1})_{22}\alpha^2 &+ (\mathsf{G}^{-1})_{33}\beta^2 + 2\alpha\beta(\mathsf{G}^{-1})_{23} + 2\alpha(\mathsf{G}^{-1})_{12} + 2\beta(\mathsf{G}^{-1})_{13} \\ &+ (\mathsf{G}^{-1})_{11} = (\mathsf{D}_{12}^{-2}) \\ (\mathsf{G}^{-1})_{11}\alpha^2 &+ (\mathsf{G}^{-1})_{33}\gamma^2 + 2\alpha\gamma(\mathsf{G}^{-1})_{13} + 2\alpha(\mathsf{G}^{-1})_{12} + 2\gamma(\mathsf{G}^{-1})_{23} \\ &+ (\mathsf{G}^{-1})_{22} = (\mathsf{D}_{22}^{-2}) \\ (\mathsf{G}^{-1})_{11}\beta^2 &+ (\mathsf{G}^{-1})_{22}\gamma^2 + 2\beta\gamma(\mathsf{G}^{-1})_{12} + 2\beta(\mathsf{G}^{-1})_{13} + 2\gamma(\mathsf{G}^{-1})_{23} \\ &+ (\mathsf{G}^{-1})_{33} = (\mathsf{D}_{33}^{-2}) \end{split}$$

We solve for (α, β, γ) from the three equations and substitute in the three equations below to obtain t he values for D_{ii} s.

A closed form solution for the equations above is very difficult to obtain. It's worth mentioning that solving the m=3 case in other methods yields polynomial equations (but often in greater number of u

nknowns). This is due to the fact there are multiple stationary points in the space of projective measurements, =

Analytic Properties of Optimal POVM Inspired by Representation from Last Section

$$DG^{\frac{1}{2}}\widetilde{U} = \begin{pmatrix} (G^{\frac{1}{2}}\widetilde{U})_{11}^{2} & (G^{\frac{1}{2}}\widetilde{U})_{11}(G^{\frac{1}{2}}\widetilde{U})_{12} & \cdots \\ (G^{\frac{1}{2}}\widetilde{U})_{21}(G^{\frac{1}{2}}\widetilde{U})_{22} & (G^{\frac{1}{2}}\widetilde{U})_{11}^{2} & \cdots \\ \vdots & \ddots & \cdots \end{pmatrix}$$

Hence $DG^{\frac{1}{2}}\widetilde{U}$ is hermitian. Now

$$(\widetilde{U}^{\dagger}G^{rac{1}{2}}D)(D^{-1}G^{-1}D^{-1})(DG^{rac{1}{2}}\widetilde{U})=\mathbb{I}$$

 $DG^{\frac{1}{2}}\widetilde{U}$ is a hermitian square root of DGD. Note that until now we have only used Holevo's necessary conditions. What Carlos Mochos² and Belavkin³, proved, proves that $DG^{\frac{1}{2}}\widetilde{U}$ is a positive square root of DGD.

³P. Belavkin, âOptimal multiple quantum statistical hypothesis testing.â Stochastics 1, 315-345 (1975).

²Phys. Rev. A 73, 032338 (2006)

From previous slide we have the equation:

$$(DG^{\frac{1}{2}}\widetilde{U})^2 - DGD = 0$$

Implicit Function Theorem

Implicit Function Theorem: Let $\{y_i\}_{i=1}^N$ be N functions (real or complex) of the independent variables - $\{t, f_i\}$ where the variables $\{f_i\}_i$, which are N in number too. Let (τ, ϕ_i) be a point such that $y_i(\tau, \phi_i)=0 \forall 1 \le i \le N$. If the Jacobian matrix $J_{i,j} = \frac{\partial y_i}{\partial f_j}$ is invertible at (τ, ϕ_i) then there exists some open neighbourhood of τ , T for which there exists open neighbourhoods S_i around ϕ_i such that $f_i: T \longrightarrow S_i$ can be defined, so that $y_i(t, f_i(t))=0 \forall 1 \le i \le N$. That is

 $\{(t,f_i)\in T\times S|y(t,f_i)=0\}=\{(t,f_i(t))|t\in T \text{ and } y(t,f_i(t))=0\} \text{ where } S=S_1\times S_2\times\cdots\times S_N.$

Analytic Implicit Function Theorem: Furthermore if y_i is an analytic function in the variables f_i then the implicit dependence of f_i on t will be analytic too.

- Here $a_i = \sqrt{(\sqrt{G}\tilde{U})_{ii}} = D_{ii}$, $f_{ij} = (\sqrt{G}\tilde{U})_{ij}$, $y_{ij} = ((D\sqrt{G}\tilde{U})^2 DGD)_{ij}$, y_{ij} is analytic in f_{ij} and a_i .
- Consider a trajectory of gram matrix: G(t)
 Objective: That a_i, f_{ij} depend implicitly on t so that y_{ij}=0 ∀t∈[0,1].
- Unable to prove that the Jacobian is non-singular at every point. But we know the functions $f_{ii}(t)$ and $a_i(t)$ exist.
- Thus the function exists and is continuous. Since y_{ij} is polynomial in the variables f_{ij} and a_i, f_{ij}(t) and a_i(t) are analytic in t.

< ロ > < 同 > < 回 > < 回 >

Dragging the Solution from One Point to Another

- Using implicit function theorem we get differential equations: $\frac{dy_{ij}}{dt} = \zeta_{ij}(t; a_k(t), f_{kl}(t), \frac{da_k(t)}{dt}, \frac{df_{kl}(t)}{dt}) = 0 \quad \forall \ 1 \le i, j \le m$ These are non-linear coupled ordinary differential equations.
- Let the starting point (initial conditions) the equiprobable orthogonal ensemble. Gram matrix corresponding to this ensemble is: G(0)=¹/_mI The trajectory we employ is linear in t: G(t)=(1-t)¹/_mI+t G where G is the gram matrix of the system which we want to solve MED for.
- We use RK4 to solve this system of coupld differential equations
 - Interval: $h=10^{-3}$ No. of iterations: 1000
 - RK4 Local Truncation Error (expected): $O(h^5) \sim -15$ RK4,Total Accumulated Error(expected): $O(h^4) \sim -12$
 - RK4 Avg. Local Truncation Error(Randomly generated for m=5): O(-16)
 - RK4 Avg. Total Accumulated Error(Randomly generated for m=5): O(-15)

ヘロト ヘ戸ト ヘヨト ヘヨト

As an illustration,

$$G = \begin{pmatrix} 0.3 & \sqrt{0.06}(0.2+i0.1) & \sqrt{0.06}(0.1) & \sqrt{0.045}(0.1) & \sqrt{0.045}(0.1) \\ \sqrt{0.06}(0.2-i0.1) & 0.2 & 0.06 & \sqrt{0.03}(0.2+i0.2) & \sqrt{0.03}(0.1) \\ \sqrt{0.06}(0.1) & 0.06 & 0.2 & \sqrt{0.03}(0.2+i0.05) & \sqrt{0.03}(0.3+i0.2) \\ \sqrt{0.045}(0.1) & (0.2-i0.2)\sqrt{0.03} & \sqrt{0.03}(0.1-i0.05) & 0.15 & (0.15)(0.2+i0.3) \\ \sqrt{0.045}(0.1) & (0.1)\sqrt{0.03} & (0.3-i0.3)\sqrt{0.03} & (0.15)(0.2-i0.3) & 0.15 \end{pmatrix}$$

Tanmay Singal ,Sibasish Ghosh Min. Error Disc. of Linearly Independent Pure States

→ < Ξ →</p>

> ∢≣

y- axis :Log of Error, x-axis: No. of iterations. One can see the gradual increase in the error from -16.8 when $1 \le x \le 10$ to -15.7 for $980 \le x \le 1000$. This shows that the truncation error is 10^{-16} and the total accumulated error is $\sim 10^{-15}$ which shows a pretty good performance for RK4.

Figure: Error vs Iteration No.