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The Problem
What is MED?

The Ensemble
{pi > 0, ρi}mi=1 ρi ∈ B(H) where dimH = n

The m POVM
{Πi}mi=1 Πi ≥ 0

∑m
i=1 Πi = I

Avg. Probability of Success: Ps =
∑m

i=1 piTr(ρi Πi )

Avg. Probability of Error: Pe =
∑m

i ,j=1
i 6=j

piTr(ρi Πj)

Pmax
s = Max{Πi}m

i=1
Ps = 1− Pmin

e

OBJECTIVE: Find Optimal m-POVM!
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Necessary And Sufficient Conditions

Necessary Condition: Πj(pjρj − piρi )Πi = 0, ∀1 ≤ i , j ≤ m
(Given by Holevo)
SDP Necessary and Sufficient Conditions:

MinZ=Z†Tr(Z ) 3 Z ≥ piρi ∀ 1 ≤ i ≤ m

Complementary Slackness Conditions (given by Yuen):
(Z − piρi )Πi = Πi (Z − piρi ) = 0, ∀ 1 ≤ i ≤ m
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Some Important Ensembles Solved So Far

When Supp(ρi )⊥ Supp(ρj) ∀ i , j
Πi = Projector on Supp(ρi ) ∀ i
Any ensemble of two states (by Helstrom)
When

∑
i piρi = 1

mI
Equiprobable ensemble when ρi lie on the orbit of some
unitary: ρi+1 = U ρi U†

For three qubits (recently)
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Problem We Look At

The problem we look at is MED when ρi → |ψi〉〈ψi |
and { ψi } are linearly independent.
In this case dim(H) = m
Kennedy showed that
Πi → |vi〉〈vi |, where 〈vi |vj〉 = δi ,j ∀ 1 ≤ i , j ≤ m.
i.e. Optimal m-POVM is rank-one projective measurement
Case when m = 2 has been solved, but not for m = 3.
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A Special Representation

Ensemble: {pi , |ψi〉〈ψ)i |}mi=1 where |ψi〉 are LI.
Define: |ψ̃i〉 =

√pi |ψi〉
|ψ̃i〉 are LI ⇒ ∃ {|ũi〉} 3 〈ψ̃i |ũj〉 = δi ,j

Let G be gram matrix of { |ψi〉} i.e. Gij = 〈ψ̃i |ψ̃j〉
which implies and is implied by G−1

ij = 〈ũi |ũj〉

Let {|vi〉} be any ONB. Then |vi〉 =
∑m

j=1(G
1
2 U)j,i |ũj〉

where U is some unitary.
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Holevo’s Necessary Condition:

⇒ 〈vj |(|ψ̃j〉〈ψ̃j | − |ψ̃i〉〈ψ̃i |)|vi〉 = 0, ∀ 1 ≤ i , j ≤ m

⇒ (G
1
2 Ũ)ii (G

1
2 Ũ)∗ij = (G

1
2 Ũ)ji (G

1
2 Ũ)∗jj ∀ 1 ≤ i , j ≤ m

Add a phase −→ |vi〉 −→ eiφi |vi〉 so that
(G

1
2 Ũ)i ,i ≥ 0

Let D = Diag((G
1
2 Ũ)11), (G

1
2 Ũ)22), · · · , (G

1
2 Ũ)mm)

Then the matix G
1
2 ŨD−1 is hermitian.

G
1
2 ŨD−1 =


1 (G

1
2 Ũ)1,2

(G
1
2 Ũ)2,2

· · ·

(G
1
2 Ũ)2,1

(G
1
1 Ũ)1,1

1 · · ·
... . . . ...

 (1)
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Consider the equation:

D−1Ũ†G 1
2 G−1 G 1

2 ŨD−1 = D−2 (2)

Note that the RHS is diagonal.
Now, let m=3 and the states |ψi〉 be real ⇒ everything is real
(gram matrix, optimal POVM, |̃ui〉 states etc). So we can work
in the real domain without having to worry about complex numbers.
The matrix equation upstairs is then given by1:

1 α β
α 1 γ
β γ 1

 (G−1)11 (G−1)12 (G−1)13
(G−1)21 (G−1)22 (G−1)23
(G−1)31 (G−1)32 (G−1)33

 1 α β
α 1 γ
β γ 1


=

(D11)−2 0 0
0 (D22)−2 0
0 0 (D33)−2

 (3)

1Note again that the elements (G−1)ij are known and that α,β,γ,Dii are
unknowns.
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We get 6 equations in the matrix elements:

α
2(G−1)12 + α((G−1)11 + (G−1)22 + (G−1)13β + (G−1)23γ)

+ (G−1)33βγ + (G−1)23β + (G−1)13γ + (G−1)12 = 0 (4)

β
2(G−1)13 + β((G−1)11 + (G−1)33 + (G−1)23γ + (G−1)12α)

+ (G−1)22αγ + (G−1)12γ + (G−1)23α + (G−1)13 = 0 (5)

γ
2(G−1)23 + γ((G−1)22 + (G−1)33 + (G−1)13β + (G−1)12α)

+ (G−1)11αβ + (G−1)12β + (G−1)13α + (G−1)23 = 0 (6)

The above are quadraitc in α,β,γ. Typically this set has 8 different solutions of which only one corr -
esponds to the optimal POVM. Some solutions are complex and hence discarded. The remaining solu-
tions correspond to projective measurements where Ps is stationary in the space of projective measum -
rement.

(G−1)22α
2 + (G−1)33β

2 + 2αβ(G−1)23 + 2α(G−1)12 + 2β(G−1)13

+ (G−1)11 = (D−2
11 ) (7)

(G−1)11α
2 + (G−1)33γ

2 + 2αγ(G−1)13 + 2α(G−1)12 + 2γ(G−1)23

+ (G−1)22 = (D−2
22 ) (8)

(G−1)11β
2 + (G−1)22γ

2 + 2βγ(G−1)12 + 2β(G−1)13 + 2γ(G−1)23

+ (G−1)33 = (D−2
33 ) (9)

We solve for (α, β, γ) from the three equations and substitute in the three equations below to obtain t
he values for Dii s.
A closed form solution for the equations above is very difficult to obtain. It’s worth mentioning that sol-
ving the m=3 case in other methods yields polynomial equations (but often in greater number of u

nknowns). This is due to the fact there are multiple stationary points in the space of projective measurements.
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Analytic Properties of Optimal POVM
Inspired by Representation from Last Section

DG 1
2 Ũ =

 (G 1
2 Ũ)2

11 (G 1
2 Ũ)11(G 1

2 Ũ)12 · · ·
(G 1

2 Ũ)21(G 1
2 Ũ)22 (G 1

2 Ũ)2
11 · · ·

...
. . . · · ·


Hence DG

1
2 Ũ is hermitian.

Now
(Ũ†G 1

2 D)(D−1G−1D−1)(DG 1
2 Ũ) = I

DG
1
2 Ũ is a hermitian square root of DGD. Note that until now we have only

used Holevo’s necessary conditions. What Carlos Mochos2 and Belavkin3,
proved, proves that DG

1
2 Ũ is a positive square root of DGD.

2Phys. Rev. A 73, 032338 (2006)
3P. Belavkin, âOptimal multiple quantum statistical hypothesis testing.â

Stochastics 1, 315-345 (1975).
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From previous slide we have the equation:

(DG
1
2 Ũ)2 − DGD = 0 (10)

Implicit Function Theorem

Implicit Function Theorem: Let {yi}
N
i=1 be N functions (real or complex) of the independent variables - {t,fi}

where the variables {fi}i , which are N in number too. Let (τ,φi ) be a point such that yi (τ,φi )=0 ∀ 1≤i≤N.
If the Jacobian matrix Ji,j =

∂yi
∂fj

is invertible at (τ,φi ) then there exists some open neighbourhood of τ , T

for which there exists open neighbourhoods Si around φi such that fi :T−→Si can be defined, so that
yi (t,fi (t))=0 ∀ 1≤i≤N. That is

{(t,fi )∈T×S|y(t,fi )=0}={(t,fi (t))|t∈T and y(t,fi (t))=0} where S=S1×S2×···×SN .

Analytic Implicit Function Theorem: Furthermore if yi is an analytic function in the variables fi then the implicit
dependence of fi on t will be analytic too.

Here ai =

√
(
√

GŨ)ii =Dii , fij = (
√

GŨ)ij , yij =((D
√

GŨ)2−DGD)ij , yij is analytic in fij and ai .

Consider a trajectory of gram matrix: G(t)
Objective: That ai ,fij depend implicitly on t so that yij =0 ∀t∈[0,1].

Unable to prove that the Jacobian is non-singular at every point. But we know the functions fij (t) and ai (t) exist.

The uniqueness of the optimal POVM for an ensemble ⇒ Opt. POVM varies continuously as function
of ensemble.
Thus the function exists and is continuous. Since yij is polynomial in the variables fij and ai , fij (t) and ai (t) are
analytic in t.
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Dragging the Solution from One Point to Another

Using implicit function theorem we get differential equations:
dyij
dt =ζij (t;ak (t),fkl (t),

dak (t)

dt ,
dfkl (t)

dt )= 0 ∀ 1≤i,j≤m

These are non-linear coupled ordinary differential equations.
Let the starting point (initial conditions) the equiprobable orthogonal ensemble.
Gram matrix corresponding to this ensemble is: G(0)= 1

m I

The trajectory we employ is linear in t: G(t)=(1−t) 1
m I+t G

where G is the gram matrix of the system which we want to solve MED for.

We use RK4 to solve this system of coupld differential equations
Interval: h=10−3 No. of iterations: 1000
RK4 Local Truncation Error (expected): O(h5)∼ −15

RK4,Total Accumulated Error(expected): O(h4)∼ −12

RK4 Avg. Local Truncation Error( Randomly generated for m=5): O(−16)

RK4 Avg. Total Accumulated Error( Randomly generated for m=5): O(−15)
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As an illustration,

G =


0.3

√
0.06(0.2+i0.1)

√
0.06(0.1)

√
0.045(0.1)

√
0.045(0.1)

√
0.06(0.2−i0.1) 0.2 0.06

√
0.03(0.2+i0.2)

√
0.03(0.1)

√
0.06(0.1) 0.06 0.2

√
0.03(0.2+i0.05)

√
0.03(0.3+i0.2)

√
0.045(0.1) (0.2−i0.2)

√
0.03
√

0.03(0.1−i0.05) 0.15 (0.15)(0.2+i0.3)
√

0.045(0.1) (0.1)
√

0.03 (0.3−i0.3)
√

0.03 (0.15)(0.2−i0.3) 0.15


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y- axis :Log of Error, x-axis: No. of iterations. One can see the gradual increase
in the error from − 16.8 when 1 ≤ x ≤ 10 to −15.7 for 980 ≤ x ≤ 1000. This

shows that the truncation error is 10−16 and the total accumulated error is
∼ 10−15 which shows a pretty good performance for RK4.

Figure: Error vs Iteration No.
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